10 KiB
Ollama
- Ollama
https://github.com/ollama/ollama
Firewall for Ollama
# Add home zone if you don't have one
sudo firewall-cmd --get-active-zones
sudo firewall-cmd --new-zone=home --permanent
sudo firewall-cmd --reload
# Set source address to allow connections
sudo firewall-cmd --zone=ollama --add-source=10.2.0.1/24 --permanent
sudo firewall-cmd --zone=ollama --add-port=11434/tcp --permanent
sudo firewall-cmd --reload
Install and run Ollama
https://ollama.com/download/linux
# Install script
curl -fsSL https://ollama.com/install.sh | sh
# Check service is running
systemctl status ollama
Remember to add Environment="OLLAMA_HOST=0.0.0.0" to /etc/systemd/system/ollama.service to
make it accessible on the network.
Also add Environment="OLLAMA_MODELS=/models" to /etc/systemd/system/ollama.service to
store models on an external disk.
For Radeon 6000 cards you'll need to add Environment="HSA_OVERRIDE_GFX_VERSION=10.3.0" as well.
I'd recommend the following models to get started:
- Chat: llava-llama3:latest
- Code: qwen2.5-coder:7b
- Math: qwen2-math:latest
- Uncensored: mannix/llama3.1-8b-abliterated:latest
- Embedding: nomic-embed-text:latest
Note your ollama instance will be available to podman containers via http://host.containers.internal:11434
Install and run Ollama with Podman
# AMD
# Use the below to generate a quadlet for /etc/containers/systemd/local-ai.container
# podman run --rm ghcr.io/containers/podlet --install --description "Local AI" \
podman run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama docker.io/ollama/ollama:rocm
# CPU
# Use the below to generate a quadlet for /etc/containers/systemd/local-ai.container
# podman run --rm ghcr.io/containers/podlet --install --description "Local AI" \
podman run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama docker.io/ollama/ollama
Unsticking models stuck in "Stopping"
ollama ps | grep -i stopping
pgrep ollama | xargs -I '%' sh -c 'kill %'
Run Anything LLM Interface
podman run \
-d \
-p 3001:3001 \
--name anything-llm \
--cap-add SYS_ADMIN \
-v anything-llm:/app/server \
-e STORAGE_DIR="/app/server/storage" \
docker.io/mintplexlabs/anythingllm
This should now be accessible on port 3001. Note, you'll need to allow traffic between podman and the host:
Use podman network ls to see which networks podman is running on and podman network inspect
to get the IP address range. Then allow traffic from that range to port 11434 (ollama):
ufw allow from 10.89.0.1/24 to any port 11434
Installing External Service with Nginx and Certbot
We're going to need a certificate for our service since we'll want to talk to it over https. This will be handled by certbot. I'm using AWS in this example, but certbot has tons of DNS plugins available with similar commands. The important part is getting that letsencrypt certificate generated and in the place nginx expects it.
Before we can use certbot we need aws credentials. Note this will be different if you use a different DNS provider.
See generating AWS credentials
curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
./aws/install
# Configure default credentials
aws configure
With AWS credentials configured you can now install and generate a certificate.
# Fedora
dnf install -y certbot python3-certbot-dns-route53
# Ubuntu
apt install -y python3-certbot python3-certbot-dns-route53
# Both
certbot certonly --dns-route53 -d chatreesept.reeseapps.com
Now you have a cert!
Install and start nginx with the following commands:
# Fedora
dnf install -y nginx
# Ubuntu
apt install -y nginx
# Both
systemctl enable --now nginx
Now let's edit our nginx config. First, add this to our nginx.conf (or make sure it's already there).
/etc/nginx/nginx.conf
keepalive_timeout 1h;
send_timeout 1h;
client_body_timeout 1h;
client_header_timeout 1h;
proxy_connect_timeout 1h;
proxy_read_timeout 1h;
proxy_send_timeout 1h;
Now write your nginx http config files. You'll need two:
- ollama.reeseapps.com.conf
- chatreesept.reeseapps.com.conf
/etc/nginx/conf.d/ollama.reeseapps.com.conf
server {
listen 80;
listen [::]:80;
server_name ollama.reeseapps.com;
location / {
return 301 https://$host$request_uri;
}
}
server {
listen 443 ssl;
listen [::]:443 ssl;
server_name ollama.reeseapps.com;
ssl_certificate /etc/letsencrypt/live/ollama.reeseapps.com/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/ollama.reeseapps.com/privkey.pem;
location / {
if ($http_authorization != "Bearer <token>") {
return 401;
}
proxy_pass http://127.0.0.1:11434;
proxy_set_header Host $host;
proxy_buffering off;
}
}
/etc/nginx/conf.d/chatreesept.reeseapps.com.conf
server {
listen 80;
server_name chatreesept.reeseapps.com;
location / {
return 301 https://$host$request_uri;
}
}
server {
listen 443 ssl;
server_name chatreesept.reeseapps.com;
ssl_certificate /etc/letsencrypt/live/chatreesept.reeseapps.com/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/chatreesept.reeseapps.com/privkey.pem;
location / {
client_max_body_size 50m;
proxy_pass http://localhost:3001;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;
}
}
Run nginx -t to check for errors. If there are none, run systemctl reload nginx to pick up
your changes. Your website should be available at chatreesept.reeseapps.com and localai.reeseapps.com.
Set up automatic certificate renewal by adding the following line to your crontab to renew the certificate daily:
sudo crontab -e
Add the following line to the end of the file:
0 0 * * * certbot renew --quiet
At this point you might need to create some UFW rules to allow inter-container talking.
# Try this first if you're having problems
ufw reload
# Debug with ufw logging
ufw logging on
tail -f /var/log/ufw.log
Also consider that podman will not restart your containers at boot. You'll need to create quadlets from the podman run commands. Check out the comments above the podman run commands for more info. Also search the web for "podman quadlets" or ask your AI about it!
Ollama Models
Custom Models
https://www.gpu-mart.com/blog/import-models-from-huggingface-to-ollama
https://www.hostinger.com/tutorials/ollama-cli-tutorial#Setting_up_Ollama_in_the_CLI
From Existing Model
ollama show --modelfile opencoder > Modelfile
PARAMETER num_ctx 8192
ollama create opencoder-fix -f Modelfile
From Scratch
Install git lfs and clone the model you're interested in
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/bartowski/Starling-LM-7B-beta-GGUF
Create a modelfile
# Modelfile
FROM "./path/to/gguf"
TEMPLATE """{{ if .Prompt }}<|im_start|>
{{ .Prompt }}<|im_end|>
{{ end }}
"""
SYSTEM You are OpenCoder, created by OpenCoder Team.
PARAMETER stop <|im_start|>
PARAMETER stop <|im_end|>
PARAMETER stop <|fim_prefix|>
PARAMETER stop <|fim_middle|>
PARAMETER stop <|fim_suffix|>
PARAMETER stop <|fim_end|>
Build the model
ollama create "Starling-LM-7B-beta-Q6_K" -f Modelfile
Run the model
ollama run Starling-LM-7B-beta-Q6_K:latest
Discovering models
Check out Hugging Face's leaderboard: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
- Select the model type you're after
- Drag the number of parameters slider to a range you can run
- Click the top few and read about them.
Custom models from safetensor files
https://www.theregister.com/2024/07/14/quantization_llm_feature/
Setup the repo:
# Setup
git clone https://github.com/ggerganov/llama.cpp.git
cd ~/llama.cpp
cmake -B build
cmake --build build --config Release -j $(nproc)
python3 -m venv venv && source venv/bin/activate
pip install -r requirements.txt
huggingface-cli login #necessary to download gated models
python convert_hf_to_gguf_update.py $(cat ~/.cache/huggingface/token)
Convert models to gguf:
# Copy the model title from hugging face
export MODEL_NAME=
# Create a folder to clone the model into
mkdir -p models/$MODEL_NAME
# Download the current head for the model
huggingface-cli download $MODEL_NAME --local-dir models/$MODEL_NAME
# Or get the f16 quantized gguf
wget -P models/$MODEL_NAME https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-gguf/resolve/main/llava-llama-3-8b-v1_1-f16.gguf
# Convert model from hugging face to gguf, quant 8
python3 convert_hf_to_gguf.py models/$MODEL_NAME --outfile models/$MODEL_NAME.gguf
# Run ./llama-quantize to see available quants
./llama-quantize models/$MODEL_NAME.gguf models/$MODEL_NAME-Q4_K.gguf 15
./llama-quantize models/$MODEL_NAME.gguf models/$MODEL_NAME-Q5_K.gguf 17
./llama-quantize models/$MODEL_NAME.gguf models/$MODEL_NAME-Q6_K.gguf 18
./llama-quantize models/$MODEL_NAME.gguf models/$MODEL_NAME-Q8_0.gguf 7
# Copy to your localai models folder and restart
scp models/$MODEL_NAME-Q5_K.gguf localai:/models/
# View output
tree -phugL 2 models